Arjmand et al.

Supplementary Table. Comparison of Plant and other-Derived Types of Exosomes. (Abbreviations: DUC, differential ultracentrifugation; GUC, gradient Ultracentrifugation; SEC, size

exclusion chromatography; UF, centrifugal ultrafiltration.)

Feature	Plant-Derived	Mammalian-	Bacterial-Derived	Fungal-Derived Exosomes	Synthetic/Engineered Exosomes	Milk-Derived Exosomes	Parasitic-Derived Exosomes
	Exosomes	Derived	Exosomes				
		Exosomes					
Source	Plants (e.g.,	Mammalian	Bacteria (e.g.,	Fungi (e.g., Candida,	Artificially synthesized or	Mammalian milk (e.g., cow,	Parasites (e.g., Leishmania,
	fruits,	cells (e.g.,	Gram-positive or	Cryptococcus)	engineered from natural	human)	Plasmodium)
	vegetables)	immune, stem,	Gram-negative		exosomes		
		tumor cells)	bacteria)				
Size	50–200 nm	30–150 nm	20–300 nm	40–250 nm	Variable, depending on design parameters	50–200 nm	50–150 nm
Composition	Lipids	Lipids	Lipids (e.g.,	Lipids	Customizable; can include	Lipids	Lipids
	Proteins	Proteins (e.g.	lipopolysaccharides)	proteins	specific lipids, proteins, and nucleic acids	Proteins,	Proteins
	RNAs,	Tetraspanins)	Proteins	RNAs		miRNAs	RNAs
	Bioactive	miRNAs	DNA/RNA				
	compounds (e.g.,						
	polyphenols)						
Biocompatibi	High; low	High; potential	Can be immunogenic	Moderate; potential	Designed for high	High; generally well-tolerated	Moderate to low; potential
lity	immunogenicity	immunogenicit	due to bacterial	immunogenicity	biocompatibility; depends on		immunogenicity
		y depending on	components (e.g.,		engineering		
		the source	endotoxins)				

Arjmand et al.

Therapeutic	Rich in bioactive	Used for cell	Emerging applications	Potential in antifungal	Tailored for specific	Applications in nutraceuticals	Potential in vaccine development
Potential	compounds	signaling	in immunotherapy and	therapies and immune	therapeutic applications,	and drug delivery systems	Modulating immune responses
	Ued in drug delivery and	Immune modulation	vaccine delivery	modulation	including targeted drug delivery		
	disease modulation	Drug delivery					
Ease of	Easily	Requires	Requires	Requires fungal	Production depends on	Easily isolated from milk	Requires parasitic cultures
Production	isolated from plant materials	cell culture systems	bacterial culture systems Moderate	culture systems Moderate complexity	synthesis methods; can be complex	Scalable	Complex and potentially hazardous
	Scalable	More complex and costly	complexity				
Stability	High stability under various conditions (e.g., pH, temperature)	Sensitive to pH, temperatu re, and storage conditions	Moderate stability; depends on bacterial species and preparation	Moderate stability; influenced by fungal species	Stability varies; can be engineered for enhanced stability	High stability; suitable for various applications	Moderate stability; depends on parasite species

Arjmand et al.

Cost	Low cost; plant	Higher cost due	Moderate cost;	Moderate cost;	Variable cost; depends	Low cost; milk is readily	High cost; parasitic cultures
	materials are	to complex	bacterial cultures	requires specialized	on materials and	available	are complex and require
	abundant and	isolation and	are relatively	fungal cultures	methods used		specialized facilities
	inexpensive	purification	inexpensive				
		processes					
Safety	Generally safe	Potential risks	Risk of endotoxin	Potential presence of	Safety depends on design	Generally safe	Potential safety risks due to
Concerns	Minimal risk of	include	contamination (e.g.,	pathogenic fungal	Off-target effects are possible	Minimal risk of contamination	pathogenic content
	pathogen transmission	contamination or tumorigenicity	lipopolysaccharides)	components			
Applications	Nutraceuticals	Cancer therapy	Immunotherapy	Vaccine development	Targeted drug delivery	Gut health	Vaccine development
	Drug deliver	Regenerative	Vaccines,	Anti-fungal targets	Gene therapy	Nutraceuticals	Immune response modulation
	Immune modulation	medicine Vaccine	antimicrobial therapies	Immune modulation	Precision medicine	Drug delivery	
		delivery					
References	(128-131)	(26, 116-118, 132, 133)	(124, 134-137)	(125, 126, 138-140)	(120, 121, 141-143)	(122, 123, 144-146)	(127, 147-149)

Arjmand et al.

