Supplementary Table. Comparison of various approaches in the treatments of IBD (**Abbreviations:** 5-ASA: 5-Aminosalicylic Acid, 6-MP: 6-Mercaptopurine, 6-TG: 6-Thioguanine, ADSCs: Adipose-Derived Stem Cells, AhR: Aryl Hydrocarbon Receptor, AZA: Azathioprine, BMSCs: Bone Marrow-Derived Mesenchymal Stem Cells, CD: Crohn's Disease, CSs: Corticosteroids, DSS-colitis: Dextran Sulfate Sodium-Induced Colitis, EGF: Epidermal Growth Factor, EVs: Extracellular Vesicles, HSCs: Hematopoietic Stem Cells, HSPs: Heat Shock Proteins, IFN-γ: Interferon-Gamma, IgG1: Immunoglobulin G1, IEC: Intestinal Epithelial Cells, IL: Interleukin, JAK: Janus Kinase, mg: Milligram, MMX: Multi-Matrix System, MSCs: Mesenchymal Stem Cells, MTX: Methotrexate, NFAT: Nuclear Factor of Activated T-Cells, NF-κB: Nuclear Factor Kappa-Light-Chain-Enhancer of Activated B Cells, ROS: Reactive Oxygen Species, S1PR1: Sphingosine-1-Phosphate Receptor 1, SASP: Sulfasalazine, TGF-β: Transforming Growth Factor Beta, Th17/Treg: T Helper 17 Cells/Regulatory T Cells, TNFα: Tumor Necrosis Factor-Alpha, UC: Ulcerative Colitis, UC-MSCs: Umbilical Cord Mesenchymal Stem Cells, VTE: Venous Thromboembolism.)

Treatment Class	Examples	Molecular Target/Pathway	Mechanism of Action	Key Clinical Trials & Efficacy	Common Side Effects	Ref.
Amino salicylates	SASP	Arachidonic acid metabolism, ROS, cytokines, aryl hydrocarbon receptor (AhR)/TGF-β pathway	Prodrug releasing 5- ASA (active component) and sulphapyridine (SP, carrier). 5-ASA inhibits prostaglandins/leukotrien es, scavenges ROS, modulates immune cells, induces Tregs via AhR.	Similar efficacy to other 5- ASA drugs in UC Cost-effective first-line option	Infertility, hemolytic anemia, photosensitization, granulocytosis	(1)
	5-ASA (e.g., mesalamine)	Arachidonic acid metabolism, ROS, cytokines, AhR/TGF-β pathway	Direct anti-inflammatory effects: Inhibits arachidonic acid metabolites, scavenges ROS, modulates cytokines, induces Tregs via AhR to activate TGF-β.	Superior capability of oral 5-ASA to placebo in UC; once-daily dosing effective Reduces colorectal cancer risk by 75% in UC Topical use prevents UC relapse Mixed evidence in CD: some long-term benefits	Mild: Flatulence, nausea, diarrhea, headache. Rare: Nephrotoxicity	(1)
CSs	Conventiona l Corticosteroi ds (e.g., prednisone)	Cytoplasmic CS receptors, NF-κB, Activator Protein -1, anti-inflammatory gene promoters, membrane receptors	Bind cytoplasmic CS receptors → inhibit proinflammatory transcription factors (NF- κB, Activator Protein -1). Promote anti- inflammatory gene expression May act via membrane receptors for rapid anti- inflammatory effects	Effective for inducing remission in UC/CD flares More effective than 5-ASA in CD No efficacy in maintaining remission	Opportunistic infections, diabetes, hypertension, osteoporosis, ocular effects, VTE, steroid dependency (15–40% of patients), Frequent mood changes	(1)
	Second- Generation CSs (e.g., budesonide)	CS receptors (high affinity)	Targeted delivery to inflammation sites (ileum/colon for pH- dependent; entire colon for MMX) Reduced systemic absorption → fewer side effects.	Budesonide MMX: Tolerability similar to placebo/mesalazine 9mg budesonide daily + taper effective for mild-to- moderate ileal/ascending colon CD	Altered glucose concentration, constipation, menorrhagia, UC exacerbation, headache, nausea, headache, flatulence, nausea, blood cortisol decrease	(1)

Extracellular vesicles in IBD

Thiopurines	AZA, 6-MP,6-TG	DNA synthesis pathways, Racı activation in T lymphocytes	Prodrugs metabolized to deoxy-6-thioguanosine phosphate Inhibits DNA synthesis → blocks lymphocyte proliferation Binds Rac1 to form 6- TGNP-Rac1 complex → inhibits T-cell activation/survival	AZA reduces hospitalization/surgery rates in UC/CD AZA/6-MP prevents UC recurrence 43.9% 7-year remission and 88% colectomy-free survival in UC 70% steroid-dependent CD patients achieve 60- month remission with AZA	Bone marrow suppression, Liver injury, Gastrointestinal intolerance	(1)
мтх		Enzymes involved in DNA synthesis, Inflammatory cytokines (IL-1, IL-2, IL-6, IL-8)	Inhibits enzymes critical for DNA synthesis Downregulates proinflammatory cytokines → suppresses T- cell proliferation and inflammation.	CD: 72% remission in active CD after 3 months of MTX CD maintenance: 65% remission at 40 weeks with 15mg/week IM vs. 39% control No efficacy in UC remission induction	Fatigue, nausea, vomiting, diarrhea, Peritoneal abscess, hypoalbuminemia, atypical pneumonia, severe rash	(1)
calcineurin inhibitors	Cyclosporine A	Calcineurin (via Cyclophilin A)	Binds to Cyclophilin A, inhibiting calcineurin → blocks NFAT dephosphorylation → reduces inflammatory cytokine production.	>80% response in severe acute refractory UC Similar 8-day remission rates for 4 mg/kg vs. 2 mg/kg Cyclosporine A No long-term benefit in CD	Monitoring of blood concentration/general status is required.	(1)
	Tacrolimus	Calcineurin (via FKBP12)	Binds to FKBP12, inhibiting calcineurin → blocks NFAT dephosphorylation. Also inhibits macrophage activation and promotes apoptosis.	68.4% vs. 10% DAI improvement in refractory UC 77.8% response rate in UC	Tremor, renal damage, infections, hot flashes, hyperkalemia, headache	(1)
Anti-TNFa	Infliximab	TNF-α	Chimeric monoclonal antibody that neutralizes TNF-α, reducing inflammation and tissue damage.	Reduced colectomy rates by 7% in UC after 54 weeks 68% clinical response in CD; 55% fistula healing Efficacy observed within 2 weeks	Commonly, skin eruptions, rarely pneumonia, tuberculosis, lymphoma, drug-induced lupus, and hepatotoxicity	(1, 76, 77)
	Adalimumab	TNF-α	Human monoclonal antibody targeting TNF-α to block inflammatory signaling.	Used for steroid- dependent or refractory IBD Similar Efficacy to Infliximab	most common: injection site reactions, infections, rare ones: malignancies, congestive heart failure, lupus-like syndrome, and demyelinating	(1, 75, 78, 79)

	[diseases	
					uiseases	
	Golimumab	TNF-α	Fully human IgG1 monoclonal antibody against TNF-α.	Approved for moderate- to-severe UC and CD	Pulmonary side effects, pneumonia, tuberculosis, and asthma, infusion reactions, drug-induced lupus erythematosus, and psoriasiform reactions	(1, 80, 81)
IL-12/23 Inhibitor	Ustekinuma b	IL-12/IL-23 (p40 subunit)	Binds to the shared p40 subunit of IL-12/IL-23, blocking receptor interaction on T/NK cells. Inhibits downstream inflammation.	Approved for moderate- severe CD and UC Reduced gut inflammation in CD patients vs. placebo. Higher remission rates at 6 and 44 weeks.	Tuberculosis, Mycobacterium abscesses infection during treatment, monitoring for potential adverse events	(1, 82, 83)
	Mirikizumab	IL-23 (p19 subunit)	Targets the unique p19 subunit of IL-23, inhibiting its pro- inflammatory effects.	200 mg dose improved UC remission at 12 weeks vs. placebo	infections, injection-site reactions, and nasopharyngitis	(1, 84)
	Risankizuma b	IL-23 (p19 subunit)	Humanized monoclonal antibody against IL-23 p19, blocking IL-23 signaling.	Better than placebo for CD remission. 70% of CD patients stayed in remission for 1 year.	Myocardial infarction, cataract, and pancreatitis	(1, 85)
Anti-integrin	Vedolizumab	α4β7 integrin / MAdCAM-1 interaction	Blocks α4β7 binding to MAdCAM-1, inhibiting lymphocyte migration to the gut.	Effective for inducing/maintaining remission in UC and CD Approved for moderate- severe UC/CD refractory to anti-TNF therapy.	Infections, rheumatic disorders, and cutaneous manifestations	(1, 86)
	Etrolizumab	β7 subunit of α4β7 and αΕβ7 integrins	Targets β7 subunit, blocking both α4β7- MAdCAM-1 (migration) and αΕβ7-E-cadherin (retention).	Superior to placebo in inducing UC remission at week 10 Efficacy in maintenance unconfirmed.	No major safety issues reported.	(1)
	Carotegrast Methyl (AJM300)	α4 subunit (α4β7 and α4β1 integrins)	Oral small molecule inhibiting α4 subunit, blocking leukocyte adhesion.	More effective than placebo in UC at week 8	Acceptable safety profile.	(1)
	PF-00547659	MAdCAM-1	Fully human monoclonal antibody blocking MAdCAM-1, preventing	Effective in inducing remission in moderate-	Well-tolerated.	(1)

Extracellular vesicles in IBD

			α4β7 integrin binding.	severe UC		
	PN-943	α4β7 integrin	Oral peptide antagonist of α4β7 integrin.	Phase II trial: ongoing for moderate-severe UC	Safety data pending.	(1)
	Tofacitinib	JAK1/JAK3 (pan-JAK inhibitor)	Blocks JAKs, reducing cytokine signaling (IL-2, IL-21, etc.). Approved for UC.	Higher remission rates vs. placebo at 8 weeks (18.5% vs. 8.2%) and 52 weeks (40.6% vs. 11.1%). Effective in severe/refractory UC.	Infections, nausea, vomiting, Alopecia, Venous thromboembolism, Truncal maculopapular rash	(1, 87)
JAK Inhibitor	Filgotinib	Selective JAK1 inhibitor	Targets JAK1, minimizing off-target effects.	47% remission vs. 23% placebo at 10 weeks	nausea, upper respiratory and urinary tract infections, dizziness, and lymphopenia, potential effects on male fertility	(1, 88, 89)
	Upadacitinib	Selective JAK1 inhibitor	Inhibits JAK1, reducing inflammation.	Dose-dependent remission (45 mg: 19.6% vs. 0% placebo) Higher endoscopic improvement (45 mg: 35.7% vs. 2.2%).	Nasopharyngitis, creatine phosphokinase elevation, headache, and anemia, herpes zoster infections, and thromboembolic events in some patients, cytomegalovirus colitis and hyperlipidemia in adolescents	(1, 90, 91)
Sphingosie-1- Phosphate Receptor	Ozanimod	S1PR1, S1PR5	Binds to S1PR1/5, sequestering lymphocytes in lymph nodes → reduces gut inflammation.	Higher clinical remission vs. placebo (1 mg/day) 18.4% vs. 6% remission (induction); 37% vs. 18.5% (maintenance) 23.2% endoscopic response, 39.1% clinical remission (no control group).	Levels. Infection, anemia, elevated liver enzymes, and rare instances of bradycardia, heart block, and macular edema	(1, 92, 93)
Modulators and Agonists	Etrasimod	S1PR1, S1PR4, S1PR5	Selective agonist for S1PR1/4/5, blocking lymphocyte egress to inflamed tissues.	 2 mg/day improved clinical (P=0.009) and endoscopic outcomes (P=0.003) vs. placebo. 2 mg maintained clinical benefits for up to 52 weeks, with 64% of patients achieving clinical response and 33% reaching clinical remission 	headache, pyrexia, nausea, fatigue, and dizziness	(1, 94, 95)
Stem Cell Transplantati	Autologous HSCs (bone marrow, umbilical cord, peripheral blood)	CD34 glycoprotein; Immune reset via chemotherapy	Eliminates self-reactive lymphocytes and generates self-tolerant immune cells via chemotherapy-induced immune ablation.	68% remission in refractory CD 38% steroid-free remission at 1 year 80% remission after relapse with re-treatment	infections, particularly febrile neutropenia and viral infections, mucositis, hemorrhagic complications, and potential worsening of perianal CD, Ectopic tissue formation and graft-versus-host disease	(1, 96, 97)
on	MSCs (BMSCs , ADSCs, UC- MSCs)	Cytokines (TNF-α, IFN-γ, IL-10); Th17/Treg axis	Immunomodulation via cytokine regulation (↓ pro- inflammatory, ↑ anti- inflammatory), differentiation into mesodermal cells, tissue repair via trophic factors.	 80% clinical response in refractory CD 40% anal fistula healing 61.75% fistula healing vs. placebo (meta-analysis) 	Mild adverse events (transient fever)	(1)

Extracellular vesicles in IBD

	ISCs (intestina l organoids)	Wnt/Notch signaling; growth factors (EGF, R-spondin)	Regenerates intestinal epithelium by differentiating into functional IECs (goblet, absorptive cells) and restoring crypt-villus architecture.	Preclinical success in DSS- colitis mice (organoid engraftment) No clinical trials yet; limited animal studies	theoretical risks: engraftment failure, immune rejection	(1)
	MSC-Derived Exosomes (e. g., umbilical cord MSCs)	TGF-β, macrophage modulation	Reduce pro-inflammatory cytokines (TNF-α, IL-1β, IL-6) and increase anti- inflammatory cytokines (IL-10) And promote tissue repair via immunomodulatory cargo (proteins, miRNAs)	Reduced inflammation in mouse IBD models Treating refractory perianal fistulas in CDs	Minimal immunogenicity; transient immune activation (theoretical)	(1, 98, 99)
	Immune Cell-Derived Exosomes (e. g., IL-10- treated dendritic cells)	IL-10 signaling; Th17/Treg axis	Suppress pro- inflammatory cytokines (IL-6, IL-17) and enhance anti-inflammatory pathways.	Inhibited colitis in mouse models	Limited data; potential immune tolerance disruption	(1)
EVs	IEC-Derived Exosomes	Immune tolerance pathways	Promote IEC-mediated immune tolerance and barrier repair via junctional proteins (e.g., PrPc).	Preclinical evidence of barrier restoration	Unknown; theoretical risk of autoimmunity	(1)
	Food- Derived Exosomes (e. g., coconut water, vegetables)	miRNA-mediated mRNA regulation	Deliver plant-derived miRNAs to suppress inflammation and modulate host gene expression.	Anti-inflammatory effects in vitro No clinical trials	Generally safe; potential allergenicity (untested)	(1)
	Parasite- Derived EVs (e.g., hookworm EVs)	IL-6, IL-1β, IFN-γ, IL- 17 inhibition	Suppress pro- inflammatory cytokines via EV cargo (e.g., immunomodulatory proteins).	Reduced colitis severity in mice	Theoretical risks: parasitic antigen exposure, immune reactions	(1)
	ANXA1- Containing Exosomes	Formyl peptide receptor signaling	Promote epithelial restitution and barrier repair via ANXA1- mediated signaling.	Accelerated healing in UC mouse models Elevated in IBD patients	Unknown; synthetic ANXA1 mimetics may cause off-target effects	(1)
	HSP- Enriched Exosomes (e. g., HSP20, HSP70, HSP90)	Stress response pathways	Modulate inflammation and cell survival via HSP- mediated protection against mucosal damage.	Preclinical evidence in IBD models ^{223,224p>}	Unclear; HSP overexpression linked to autoimmunity (context- dependent)	(1)

